Lateral flame spread on PMMA in vertical orientation

Anna Troff¹, Manuel Osburg¹, Dr. Alexander Belt²

¹ Brandschutz Consult Ingenieurgesellschaft mbH Leipzig ² Forschungszentrum Jülich

www.bcl-leipzig.de | Brandschutz Consult Ingenieurgesellschaft mbH Leipzig

Standardised Experiment

- Lateral flame spread in vertical orientation from ISO 5658-2 [1]
- Radiant panel in an angle of 15°

18.06.2024

FDS Validation Case

- with &GEOM tilted obstruction
- determination of radiator temperature with inverse modeling process PROPTI [2]

Bndry gauge kW/m2

45.0

FDS Pyrolysis Models

Material: black, casted PMMA, 6 mm

Simple Pyrolysis		Complex Pyrolysis			
_	Simplified fire spread based on ignition temperature SPyro: scaled burning rate dependant on heat feedback and thickness of material	 Fire spread based on fundamental principles (Arrhenius equation) 			
—	Parameters from Cone Calorimeter experiments	 Parameters from experiments on multiple scales (TGA, MCC, Cone Calorimeter etc.) 			

Parameter Optimization SPyro

Relations	Heat fluxes		Optimization parameters	
Heat Release Rate	25,50,75 25,50,75		Ignition temperature	
Ignition times			Heat of vaporization	
Front temperatures during flaming [4]	25,50,75		Conductivity	
Backside temperatures	50		Heat capacity	
			Emissivity	
		Cell sizes of cone geometries		
		C3		

C5

Parameter Optimization SPyro

Relations	Heat fluxes		Optimization parameters	
Heat Release Rate	25,50,75		Ignition temper	ature
Ignition times	25,50,75		Heat of vaporization	
Front temperatures during flaming [4]	25,50,75	(Conductivity	
ckside temperatures	50	ł	Heat capacity	literature [5]
		E	Emissivity -	

Cell sizes of cone geometries

C3

C5

Optimisation Results

Number of iterations: 120 Parameters with best fit: Ignition temperature 341°C Heat of vaporization 2038 kJ/kg

Heat Release Rate

Cone C5 PMMACN h rep100

Front temperature during flaming

Experiments Lateral Flame Spread

- ISO 5658-2 experiments in April 2024 with black, casted PMMA, 6 mm thickness
- Position of flame front extracted from thermography data by Forschungszentrum Jülich
- Flame spread over entire samplewidth

Simplification of Geometry

Validation Geometry:

- cell sizes \geq 5 mm no self sustained burning
- smaller cell sizes not feasable with available computing capacity

Simplified Geometry:

- direkt application of external heat flux on surface section
- reduction of the domain and computing costs
- self sustained burning \leq 2.5 mm cell size

Comparison with experimental flame spread

- flame spreads further with lower cell size
- with cell size ≤ 2.5 mm flame spreads until end of sample
- results of cell size 2.0 mm comparable with experiment

- In this setup the cell size has a significant impact on the simulated flame spread.
- With a cell size of 2.0 mm and the simple pyrolysis approach, the flame spread between experiment and simulation is comparable.

Critical Heat Flux PMMA ~ 10 kW/m²

- Comparison between validation geometry and simplified geometry
- Comparison between simple pyrolysis and complex pyrolysis (with parameters from [3])
- Parameter optimisation for all 5 (temperature-dependent) parameters in simple pyrolysis
- Sensitivity analysis of input parameters
- Comparison of effective parameters with literature values
- Experiments and simulations for further materials

Sources and Supporters

[1] ISO 5658-2 – 2006-09: Reaction to fire tests – Spread of flame – Part 2: Lateral spread on building and transport products in vertical configuration.

[2] L. Arnold; T. Hehnen; P. Lauer; C. Trettin; A. Vinayak (2019): Application cases of inverse modelling with the PROPTI framework. Fire Safety Journal. 108. 102835. 10.1016/j.firesaf.2019.102835.

[3] T. Hehnen; L. Arnold (2023): PMMA pyrolysis simulation – from micro- to real-scale. Fire Safety Journal. 141. 103926. 10.1016/j.firesaf.2023.103926.

[4] Rhodes, B. T., & Quintiere, J. G. (1996). Burning rate and flame heat flux for PMMA in a cone calorimeter. Fire Safety Journal, 26(3), 221-240.

[5] FDS Validation Case: NIST_NRC_Parallel_Panels. https://github.com/firemodels/fds/blob/master/Validation/NIST_NRC_Parallel_Panels/FDS_Input_Files/PMMA_60_kW_1_cm .fds (last checked: 13.06.2024)

SPONSORED BY THE

Federal Ministry of Education and Research

